Portals 3.3 on the Sandia/Cray Red Storm System

Ron Brightwell ~ Trammell Hudson*

Kevin Pedretti

Rolf Riesen Keith D. Underwood

Sandia National Laboratories'
PO Box 5800
Albuquerque, NM 87185-1110

Abstract

The Portals 3.3 data movement interface was developed
at Sandia National Laboratories in collaboration with the
University of New Mexico over the last ten years. Portals
is intended to provide the functionality necessary to scale
a distributed memory parallel computing system to thou-
sands of nodes. Previous versions of Portals ran on several
large-scale machines, including a 1024-node nCUBE-2, a
1800-node Intel Paragon, and the 4500-node Intel ASCI
Red machine. The latest version of Portals is the lowest-
level network transport layer on the Sandia/Cray Red Storm
platform. In this paper, we describe how Portals are im-
plemented for Red Storm and discuss many of the impor-
tant features and benefits that Portals provide for support-
ing various services in the Red Storm environment.

1. Introduction

The Portals 3.3 interface [3] is an evolution of the user-
level network programming interface developed in early
generations of the lightweight kernel operating systems
[5, 7] that were developed for large-scale massively paral-
lel distributed memory parallel computers. Early versions
of Portals did not have functional programming interfaces,
which severely hampered an implementation for intelligent
or programmable networking hardware. In order to bet-
ter support platforms with intelligent and/or programmable
network interface hardware, the Portals 3.0 functional pro-
gramming interface was developed. This interface was
specifically designed to meet the requirements of a large-
scale distributed memory parallel computer, such as the
Sandia/Cray Red Storm machine.

The Cray SeaStar interconnect [1] was developed as part

*Under contract to Sandia via OS Research, Inc.

Sandiais amultiprogram |aboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-ACO04-
94AL 85000.

of the Cray/Sandia Red Storm massively parallel processing
machine [4]. Cray has since productized this design and is
selling Red Storm based machines under the product name
XT3. The SeaStar interconnect was designed specifically
to support a large-scale distributed memory scientific com-
puting platform. The network performance requirements
for Red Storm were ambitious when they were first pro-
posed. The network is required to deliver 1.5 GB/s of net-
work bandwidth per direction into each compute node and
2.0 GB/s of link bandwidth per direction. This yields an
aggregate of 3.0 GB/s into each node. The one-way MPI
latency requirement between nearest neighbors is 2 us and
is 5 us between the two furthest nodes.

In this paper, we describe the implementation of Portals
3.3 for the SeaStar network interface on Red Storm and
provide an initial performance evaluation using low-level
micro-benchmarks. Despite the fact that the software en-
vironment is currently under active development, the initial
performance results are promising. Current bandwidth per-
formance is higher than what can be achieved using a single
interface of any current commodity interconnect.

The rest of this paper is organized as follows. The next
section provides an overview of the SeaStar network hard-
ware. Section 3 discusses the software environment and the
implementation of Portals. A brief description of the perfor-
mance benchmarks is presented in Section 5, while perfor-
mance results are shown in Section 6. Relevant conclusions
of this paper are presented in Section 7.

2. Hardware

The Cray SeaStar ASIC[1] in the Red Storm system was
designed and manufactured by Cray, Inc. In a single chip,
it provides all of the system’s networking functions as well
as all of the support functions necessary to provide reliabil-
ity, availability, and serviceability (RAS) and boot services.
The basic block diagram can be seen in Figure 1. Indepen-
dent send and receive DMA engines interact with a router
that supports a 3D torus interconnect and a HyperTransport
cave that provides the interface to the Opteron processor.

1<%
=
Local S
= =
Ve ko Processol SRAM S | HTto
— 3 2 | Host
Y-8 x o
-
f ! :
o
>
T

Figure 1. Basic SeaStar block diagram

An embedded PowerPC processor is also provided for pro-
tocol offload.

The DMA engines provide support for transferring data
between the network and memory while providing support
for the message packetization needed by the network. They
also provide hardware support for an end-to-end 32 bit CRC
check. This augments the extremely high reliability pro-
vided by a 16 bit CRC check (with retries) that is performed
on each of the individual links.

The physical links in the 3D topology support up to 2.5
GB/s of data payload in each direction. This accounts for
overhead in both the 64 byte packets used by the router and
the reliability protocol on the individual links. The interface
to the Opteron uses 800 MHz HyperTransport, which can
provide a theoretical peak of 3.2 GB/s per direction with a
peak payload rate of 2.8 GB/s after protocol overheads (and
a practical rate somewhat lower than that).

The PowerPC processor is designed to offload protocol
processing from the host processor. It is a dual-issue 500
MHz PowerPC 440 processor with independent 32 KB in-
struction and data caches. It must program the DMA en-
gines since transactions across the HyperTransport bus re-
quire too much time to allow the host processor to program
these engines. On the receive side, the PowerPC is also
responsible for recognizing the start of new messages and
reading the new headers. Finally, the PowerPC must recog-
nize DMA completion events. To hold local state and han-
dle interactions with the host, the PowerPC has 384 KB of
scratch memory. This memory is protected by ECC com-
plete with scrubbing. In this context, a certain portion of
the network management must be offloaded to the NIC, but
there is an opportunity to offload the majority of network
protocol processing as well.

3. Portals

The Portals [2] network programming interface was de-
veloped jointly by Sandia National Laboratories and the
University of New Mexico. Portals began as an integral
component of the SUNMOS [5] and Puma [7] lightweight
compute node operating systems. In 1999, an operational
programming interface was created for Portals so that it
could be implemented for intelligent and/or programmable
network interfaces outside the lightweight kernel environ-
ment [3]. Portals is based on the concept of elementary
building blocks that can be combined to support a wide va-
riety of upper-level network transport semantics.

Portals provides one-sided data movement operations,
but unlike other one-sided programming interfaces, the tar-
get of a remote operation is not a virtual address. Instead,
the ultimate destination of a message is determined at the
receiving process by comparing contents of the incoming
message header with the contents of Portals structures at
the destination. The following describes these structures.

3.1. Portals Objects

Portals exposes a virtual network interface to a process.
Each network interface has an associated Portal table. Each
table entry can be thought of as the initial protocol switch
point for incoming messages. Portal table entries are simply
indexed from 0 to n-1. The current implementation of Por-
tals for the SeaStar has 64 Portal table entries. Portal table
entries are somewhat analogous to UNIX well-known port
numbers or can be thought of as tagged messages, where
each tag can be used to implement a different upper-level
protocol.

A match entry can be attached to a Portal table entry to
provide more detailed message selection capability. When
a message reaches a match entry, the following information
in the message header is compared to the match entry:

e Source node id

Source process id
e Jobid

e Userid

e 64 match bits

e 64 ignore bits

Source node id and process id provide the ability to select
only those messages from a specific node or process. Like-
wise, job id and user id allow for matching only those mes-
sages from a specific job or user. The job id provides a way
to aggregate a group of processes, such as those launched as

part of the same parallel application. All four of these can
be wildcarded to allow for matching against any node, any
process, any job, or any user.

The match bits can be used to encode any arbitrary tag
matching scheme. The ignore bits are used to mask bits that
are not needed or to wildcard specific bits to match any of
the match bits.

Match entries can be linked together to form a list of
match entries, called a match list. When a message arrives
at a Portal index with a match entry attached, information
in the message header is compared to the information in the
match entry. If the entry accepts the message, the message
will continue to be processed by the memory descriptor (de-
scribed below) that is attached to the match entry. If the en-
try does not match, the message continues to the next match
entry in the list. A match entry also has the option of being
automatically unlinked from the match list after it has been
consumed. Unlinking frees all system resources associated
with the match entry.

A memory descriptor can be attached to a match entry. A
memory descriptor describes a region of memory and how
this memory responds to various operations. The region of
memory can be a single logically contiguous region or can
be a list of regions within a process’ address space. There
are no restrictions on the alignment of the memory region
or on the length.

Each memory descriptor has a threshold value that gets
decremented for each operation performed on the memory
descriptor. The memory descriptor becomes inactive, or
non-responsive, when its threshold reaches zero. Thresh-
old values can be any nonnegative integer value or a mem-
ory descriptor can be assigned an infinite threshold that al-
lows for creating a persistent memory descriptor that will
respond to an unlimited number of operations.

There is a number of options that indicate how a mem-
ory descriptor responds to incoming data transfer requests.
Memory descriptors can be configured to respond only to
get and/or put operations. Each memory descriptor also has
an offset value associated with it. For memory descriptors
that are locally managed, successive operations increase the
offset by the length of the request. Memory descriptors may
also be configured to have a remotely managed offset. In
this case, the offset used in the operation is determined by
the initiator of the operation.

Memory descriptors can also be configured to truncate
incoming requests that are larger than the size of the mem-
ory region that the descriptor spans. By default, incoming
messages that are larger than the described memory region
are rejected by the memory descriptor. Allowing for trunca-
tion reduces the length of the incoming request to the only
what the memory descriptor has available.

Memory descriptors with a locally managed offset also
have an option, called the maximum size option, to become

initiator target

send start \Ut‘

n n
send end | put start

- put end

ack

get start

/ get end

reply start
reply end

Figure 2. Portals events

inactive when the amount of unused space in the memory
region falls below a certain amount.

By default, a memory descriptor automatically gener-
ates an acknowledgment to the originating process for ev-
ery incoming successful put operation. The acknowledg-
ment contains information about the result of the operation
at the destination. In order for an acknowledgment to be
generated, the initiator must request one and the target must
be configured to generate one. Acknowledgments can be
turned off by configuring the memory descriptor to suppress
acknowledgments or by having the initiator not request one.

As with match entries, memory descriptors can also be
configured to be freed when they become inactive, either
via the threshold value or by the maximum size. When a
memory descriptors becomes inactive, the associated match
entry also becomes inactive. Memory descriptors need not
always be associated with a match entry. Such free-floating
memory descriptors can only be used by the source of a put
operation or the target of a get operation.

A memory descriptor may have an event queue associ-
ated with it. An event queue is used to indicate the start
and/or completion of an operation on a memory descriptor.
An event queue can be associated with any number of event
queues, but each memory descriptor may only be associated
with a single event queue.

Each event queue is composed of individual events that
are managed as a circular queue in a process’ address space.
There are several event types associated put and get opera-
tions. These events are illustrated in Figure 2. Most of these
operations generate a start/end event pair that captures the
state of the memory descriptor when the operation has be-
gun and when it has completed. The memory descriptor

from which a put operation has been initiated will generate
a SEND event pair. The target of a put operation will gener-
ate a PUT event pair. If an acknowledgment was generated,
a Ack event will also be generated at the initiating memory
descriptor. For get operations, a REPLY event pair is gener-
ated at the initiator, while a GET event pair is generated at
the target memory descriptor.

Split phase events are designed to preserve ordering of
events, since two operations may start in order but com-
plete out of order. The typical case is a very long message
followed by a very short one. The long message will tra-
verse the match list and memory descriptors first, so the start
event associated with the long message will appear in the
event queue first. However, it may take significantly longer
to deliver the long message, so the end event for the short
message may appear in the event queue before the end event
for the long message. Split phase events can also be used to
inform the user of network-related errors. An operation that
has begun successfully may not be able to complete due to a
catastrophic network failure. In this case, an end event can
be generated that indicates that the completion of the opera-
tion was unsuccessful. In addition to the type of event, each
event records the state of the memory descriptor at the time
the event was generated. Individual memory descriptors can
be configured so that neither start events nor end events are
generated.

4. Portals mplementation

An initial reference implementation of Portals 3.3 was
done by Sandia in 1999. This reference implementation
was designed to be easily portable between different net-
work and kernel architectures, with a mix of user-space,
kernel-space, and NIC-space implementations as possible
targets. As of this writing, there exist implementations of
nearly all possible permutations of address spaces. It was
not, however, designed to allow these address spaces to be
mixed at runtime — the target was always a small number of
applications per node all in the same address space.

The implementation of Portals for the SeaStar is based
on this reference implementation developed by Sandia. The
Red Storm system presented a novel requirement in that it
needed to support several different systems with the same
code base:

e Catamount compute nodes with "generic” app and
generic” pct

e Catamount compute nodes with "accelerated” app and
generic” pct

e Linux service nodes with many “generic” yods and
kernel level Luster

e Linux compute nodes with single user level app

The NIC firmware on the SeaStar for each of these is
exactly the same, so it must be generic enough to support
moving data into both user-level data buffers, kernel buffers
and delivering notifications to user-level event queues and
to a single kernel-managed event queue. The design and
implementation of the firmware is discussed in [6].

The reference implementation has a network abstraction
layer (NAL) that allows all implementations to share the
same Portals library code, with the NAL providing the user
API to library to NIC communications paths. In practice,
each of these NALSs share a large amount of code for moving
data between address spaces. For instance, all Linux NALs
that run user-level applications with the Portals Library in
kernel-space will need to use the same address validation
routines and routines to copy data between user- and kernel-
space.

Since each of the different cases for Red Storm differs
only in the communication path between the user-level API
and the Portals library code, they can share all of the li-
brary to NIC methods of the NAL. Unfortunately, the ex-
isting reference implementation was not designed with this
sort of sharing in mind. To abstract the separate communi-
cation paths, Cray designed a "bridge” layer that sits atop
the NAL and overrides the methods for moving data to and
from API and library-space, as well as the address valida-
tion and translation routines.

Three bridges have been implemented:

e gkbridge for Catamount compute node applications
o ukbridge for Linux user-level applications

e kbridge for Linux kernel-level applications

Every NAL for Catamount, for instance, would share the
same gkbridge code. Since the bulk of the API to library
NAL is in the shared routines, this design allows very rapid
development of new library to NIC NALSs.

The ukbridge and kbridge are very interesting because
they are able to run simultaneously on a single node. Since
both bridges use the same library to NIC communication
paths, both kernel-level applications and user-level applica-
tions are able to cleanly share the NIC.

The latest Portals reference implementation now sup-
ports a similar interface abstraction based on the success
of the bridge approach. It is hoped that this will allow more
rapid development of new NALs. Thanks to the removal of
much of the complexity in writing a new NAL, we hope that
this ease of development will allow Portals to become more
widely used on different platforms.

4.1. SeaStar NAL

There are two primary constraints to consider in an im-
plementation of Portals for the SeaStar. The first is the lim-
ited amount of memory available in the SeaStar chip. Lim-
iting the design to only the 384 KB of SRAM that could
be provided internally helps to improve reliability and re-
duce cost. Unfortunately, it also makes the offload of the
entire Portals functionality somewhat challenging. The sec-
ond constraint is the lack of any facilities to manage the
memory maps for the small pages used by Linux.

In light of these constraints, the initial design of Por-
tals for the SeaStar places relatively little functionality on
the NIC. The NIC is primarily responsible for driving the
DMA engines and copying new message headers to the
host. When these new headers have been copied to the host,
the host is interrupted to perform the Portals processing.
In response, the host pushes down commands for deposit-
ing the new message. Similarly, on the transmit side, the
host pushes commands to the NIC to initiate transfers. In
both cases, the PowerPC is responsible for interpreting the
commands and driving the DMA engines. When a message
completes, the PowerPC must again interrupt the host to al-
low it to post the appropriate Portals event. All of this is
handled by a tight loop that checks for work on the NIC and
then check for work from the host.

The commands from the host to the NIC takes different
forms depending on the operating system. Under Linux,
the host is responsible for pinning physical pages, find-
ing appropriate virtual to physical mappings for each page,
and pushing all of these mappings to the NIC. In contrast,
the Catamount light-weight kernel running on the compute
nodes maps virtually contiguous pages to physically con-
tiguous pages. This means that a single command is suffi-
cient to allow the NIC to feed all necessary commands to
the DMA engine.

The SeaStar NAL, or SSNAL, implements all of the
entry-points required by a Portals NAL, including func-
tions for sending and receiving messages. Addition-
ally, SSNAL provides an interrupt handler for process-
ing asynchronous events from the SeaStar. In this way,
the platform-independent Portals library code can access
the SSNAL through the common NAL interface and the
SeaStar firmware can access platform-independent Portals
functions (e.g., Portals matching semantics) through the in-
terrupt handler. Our measurements indicate that a NULL-
trap into the Catamount kernel requires approximately 75 ns
of overhead—not a significant source of overhead. Inter-
rupts, on the other hand, are very costly, requiring at least
2 us of overhead each. Clearly, it will be necessary to elim-
inate all interrupts from the data path in order to meet the
performance requirements of Red Storm.

In the future, a new implementation of Portals will be

created to supplement the existing implementation. Much
of the Portals library functionality, including matching, will
be offloaded to the SeaStar firmware. This will allow ar-
riving messages to be immediately processed, rather than
waiting for the host to determine what actions to take. This
implementation, referred to as accelerated mode, will en-
able user-level Portals clients to post commands directly to
the firmware, without performing any system calls. Asyn-
chronous events, such as Portals completion events, will
be processed by polling when the user-level library is en-
tered. The existing implementation, or generic mode, will
continue to be necessary and will run side-by-side with the
accelerated implementation. Limited NIC resources allow
only a small number of accelerated-mode clients per node.
Additionally, Linux nodes will continue to use generic-
mode for the foreseeable future because accelerated mode
will not support non-contiguous message buffers.

5. Benchmarks

Two different benchmarks were used to measure the per-
formance of Portals on the SeaStar. The first benchmark
was developed at Sandia as part of a set of Portals perfor-
mance and correctness tests. The second benchmark is a
port of the NetPIPE [8] to Portals. Both of these bench-
marks provide some insight into the peak achievable per-
formance of the SeaStar for various operations. This section
describes these benchmarks in more detail.

5.1. PortalPer f Benchmark

To demonstrate the peak achievable performance of the
SeaStar, we developed a Portals-level benchmark, Por-
talPerf, that measures latency and bandwidth for a put oper-
ation, a get operation, and bi-directional put operations.

To measure the latency and bandwidth of a put operation,
we create a free-floating memory descriptor at both the ini-
tiator and target. We also create a single match entry and at-
tach a single memory descriptor to it. All of these memory
descriptors are persistent, so they are created once before
the time-critical part of the benchmark is executed. These
memory descriptors are used to implement a standard ping-
pong performance test. Rank 0 starts a timer and initiates a
put operation from the free floating memory descriptor, and
rank 1 waits on an event queue until it receives a put end
event. Upon receiving the event, rank 1 responds with a put
operation back to rank 1. When rank 1 receives the put end
event from rank 1’s put operation, it stops the timer. One-
way latency is calculated by dividing the total time taken by
two. This ping-pong pattern is repeated 1000 times for each
message size.

Performance of the get operation is measured similarly.
Rank O creates a free-floating memory descriptor while rank

12 o ~

0|/

Latency (microseconds)

get ——
put-bi
put ----x---
. . . .
0 200 400 600 800 1000
Message Size (bytes)

Figure 3. Latency performance

1 attaches a memory descriptor to a match entry. Rank 1
starts a timer and initiates a get operation, waits for the get
end event to arrive, and then stops the timer.

For a bidirectional put, both rank 0 and rank 1 initiate put
operations and wait for both the send start/end event pair to
arrive as well as the put start/end event pair that signifies the
arrival of the incoming put message. The processes are first
synchronized so that they are guaranteed to be sending data
at the same time.

5.2. NetPI PE Benchmark

We developed a Portals-level module for NetPIPE ver-
sion 3.6.2. As with the PortalPerf benchmark, this module
creates a memory descriptor for receiving messages on a
Portal with a single match entry attached. The memory de-
scriptor is created once for each round of messages that are
exchanged, so the setup overhead for creating and attaching
a memory descriptor to a Portal table entry is not included
in the measurement. Compared to PortalPerf, NetPIPE is a
little more sophisticated in how it determines message size
and number of exchanges for each test it conducts. Rather
than choosing a fixed message size interval and fixed num-
ber of iterations for each test, it varies the message size in-
terval and number of iterations of each test to cover a more
disparate set of features, such as buffer alignment. Net-
PIPE also provides a performance test for streaming mes-
sages as well as the traditional ping-pong message pattern.
The Portals module that was developed for NetPIPE allows
for testing put operations and get operations for both uni-
directional and bi-directional tests and for uni-directional
streaming tests for gets and pults.

1100

et
1000 | +++47+++,+7+r+*++ +:;: R XFHKK B |
T R
900 - e
)l'xx "
800 [e
x
K
@ 700 *
i) / *
S e0f [
3 i
S 500 /%
] /
2 /
g 1'¥
@ 400 F /]
300 (//
200 [F
,; put —— |
100 put-bi
0 L L L get —x— L
20000 40000 60000 80000 100000
Message Size (bytes)
Figure 4. Bandwidth performance for

medium-sized messages

6. Results

Figure 3 shows latency performance for the put, get,
and bi-directional put operations. Zero-length latency is
4.89 ps, 6.09 us, and 8.39 us respectively. A significant
amount of the current latency is due to interrupt processing
by the host processor. We expect that latency performance
will improve as more of the message processing duties are
offloaded to the SeaStar.

Figure 4 shows bandwidth performance for put, get, and
bi-directional put operations. The bandwidth for a unidi-
rectional put tops out at 1051.43 MB/s for a 100 KB mes-
sage. The bandwidth curves are fairly steep, with half the
bandwidth for a unidirectional put being achieved at a mes-
sage of around 6 KB. The bandwidth for a get operation
is only slightly less, 1012.17 MB/s for 100 KB message.
We can also see that the impact of the bidirectional put on
bandwidth is not that significant, since the link bandwidth
is higher than the actual bandwidth into each node.

Figure 5 shows the bandwidth performance for very long
message sizes, from 100 KB up to 2 MB. Bandwidth does
not fall off as message size continues to increase. The
asymptotic bandwidth achieved by the unidirectional put
is about 1108 MB/s. Bandwidth performance in excess
of 1500 MBY/s has been measured on the system, but this
performance currently is not consistent. We are currently
working with Cray to investigate the source of this incon-
sistency.

Figure 6 presents latency results from the NetPIPE
benchmark. Results for a standard put are included as well
as the latency for streaming puts, which measures effective
throughput. The streaming numbers are currently domi-
nated by the interrupt overhead needed to process a mes-
sage. At 12 bytes for the unidirectional tests and 24 bytes

Bandwidth (MB/s)

1200

1000 ¥~

put ——
put-bi
N get
200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06
Message Size (bytes)

Figure 5. Bandwidth performance for long

messages
T T
14 b T T
|
12
—
2 10 7
° [g.-¥
2 -
S o T R TP A e o A
8 e e s "
e 8r
S
E
> o a BB g a
g e
2
T
3
4|
et-bi ——
get-stream
2+ get x|
put-bi 8
put
0) put-stream)
1 10 100 1000

Message Size (bytes)

Figure 6. NetPIPE latency performance

2500

so-EB-8
=72 5®
2000 | - il
g
2 A
Sy)
Q E +#
%
@ 1500 y)))/L |
s
£ ¥
=
g 8y
3 i/ .
S 1000 - &
@ BE" %
B
/K
500 |- % get-bi —— |
il get-stream
g get %
%,i/ put-bi &
i o put
0 o ey e il . put-stream ‘
1 10 100 1000 10000 100000 1le+06 le+07

Message Size (bytes)

Figure 7. NetPIPE bandwidth performance

for the bidirectional tests, we see the results of a small mes-
sage optimization currently in the firmware. Because 12
bytes of user data will fit in the 64 byte header packet, these
12 bytes can be copied to the host along with the header.
This allows the new message and message completion no-
tification to be delivered simultaneously and saves an in-
terrupt. The cross-over occurs at 24 bytes for bidirectional
tests because total data transferred is counted. For longer
messages, the combination of the independent progress se-
mantics of Portals with the processing of the message head-
ers on the host requires that two interrupts be used — one
to have the header processed and one to post a completion
notification to the application. In the fully offloaded im-
plementation, both interrupts will be eliminated as the NIC
will process headers and will write completion notifications
directly into process space.

Much as with the PortalPerf benchmark, Figure 7 indi-
cates a steep growth in bandwidth. The bidirectional band-
width delivers twice the unidirectional bandwidth with a
peak at over 2200 MB/s of data payload. Half of the band-
width is achieved at a respectable 8 KB in the unidirectional
case, but that rises to nearly 24 KB in the bidirectional case.
In both cases, we expect a dramatic decrease in the point at
which half bandwidth is achieved as processing is offloaded
from the host and the costly interrupt latency is eliminated.

7. Conclusion

This paper has described the implementation of Portals
for the Cray SeaStar, the custom interconnect developed by
Cray for the Red Storm and XT3 machines. The current
implementation of Portals for the SeaStar does a limited
amount of processing on the network interface and relies on
the host to perform many of the message processing duties.
This initial implementation has demonstrated respectable

performance, with a zero-length half round trip latency of
4.89 s and a peak bandwidth of over 1.1 GB/s. The soft-
ware stack for both the generic mode (using the host CPU)
and the accelerated mode (using the NIC CPU) are cur-
rently under active development. We expect both latency
and bandwidth performance to increase for each mode over
the next several months.

8. Acknowledgments

The authors gratefully acknowledge the work of the
members of the Scalable Computing Systems and Scalable
Systems Integration departments at Sandia, especially Jim
Laros and Sue Kelly.

References

[1] R. Alverson. Red Storm. In Invited Talk, Hot Chips 15, Au-
gust 2003.

[2] R. Brightwell, T. B. Hudson, A. B. Maccabe, and R. E.
Riesen. The Portals 3.0 message passing interface. Techni-
cal Report SAND99-2959, Sandia National Laboratories, De-
cember 1999.

[3] R.Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen. Por-
tals 3.0: Protocol building blocks for low overhead commu-
nication. In Proceedings of the 2002 Workshop on Communi-
cation Architecture for Clusters, April 2002.

[4] W. J. Camp and J. L. Tomkins. Thor’s hammer: The first
version of the Red Storm MPP architecture. In In Proceedings
of the SC 2002 Conference on High Performance Networking
and Computing, Baltimore, MD, November 2002.

[5] A.B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat.
SUNMOS for the Intel Paragon: A Brief User’s Guide. In
Proceedings of the Intel Supercomputer Users' Group. 1994
Annual North America Users Conference, pages 245-251,
June 1994.

[6] K. T. Pedretti and T. Hudson. Developing custom firmware
for the Red Storm SeaStar network interface. In Cray User
Group Annual Technical Conference, May 2005.

[7]1 L. Shuler, C.Jong, R. Riesen, D. van Dresser, A. B. Maccabe,
L. A. Fisk, and T. M. Stallcup. The Puma operating system
for massively parallel computers. In Proceeding of the 1995
Intel Supercomputer User’s Group Conference. Intel Super-
computer User’s Group, 1995.

[8] Q. O. Snell, A. Mikler, and J. L. Gustafson. NetPIPE: A net-
work protocol independent performance evaluator. In Pro-
ceedings of the IASTED International Conference on Intelli-
gent Information Management and Systems, June 1996.

